Technology

OracleScene

Indexing Techniques
For Time Series Data

The Oracle database offers powerful index structures such as B-Tree
indexes which, when used appropriately, can significantly improve
query performance. In this article | will explore the interval tree index,
a well known structure for indexing time intervals, and demonstrate
how a virtual interval tree can be built on top of a B-Tree index.

The article will show the benefits in terms of performance of this
technique and show how the drawbacks, such as added complexity,
can be mitigated using Oracle features, for instance pipelined table
functions and virtual columns.

James Checkley, Consulting Solutions Manager, TEOCO

Time Intervals

Time intervals present a challenge to

the database administrator as they are
described by two independent variables, a
start or beginning time and an end time.
Adding further complexity — predicates
based on time intervals are often
inequalities, and queries based around
more than one inequality are difficult to
optimise using a B-Tree.

This is difficult to visualise in abstract
terms so for the purposes of this article
I'm going to use a set of data describing
planned roadworks, made available

for public consumption by the DfT*.

Our dataset contains one row for each
planned roadwork job.

Each roadwork job is represented by a
time interval, commencing at a certain
point in time and finishing (hopefully!)
at another pre-planned time. We can
represent this data in a Gantt like format
as shown in figure 1.

With this established, we can consider
some typical queries that might be asked
of this dataset:

1) How many road works start between

the 12th October and the 28th October?

SQL> select * from temp roadworks where rownum < 4;

REFERENCE ROAD DESCRIPTION

START TIME END_TIME

2) How many road works end between the
30th October and the 5th November?
3) What roadworks will be happening
any time between 18:00 on the
23rd October and 22:00 on the 25th
October?

The first two queries depend only on a
single field of the roadworks data (the
start and end respectively). They can

be optimised trivially by, for example,
creating a B-Tree index on the start time
and the end time fields.

The third query is more difficult. Note
that we are defining a window (a query

3012768 A2
3014310 A2
3018638 A2

Eastbound at Lydden

East and Westbound btw Darenth 2014-10-18 20:00:00

Eastbound between Cobham RAB a 2014-10-13 20:00:00

2014-10-14 20:00:00

2014-11-03 06:00:00
2014-10-15 06:00:00
2014-10-14 06:00:00

1. http://data.highways.gov.uk/ha-roadworks 2. http://web.cacs.louisiana.edu/~logan/521_f08/Doc/p832-allen.pdfw 3. http://enwikipedia.org/wiki/Interval_tree
4. http://www.solidq.com/sqj/Pages/2011-September-Issue/A-Static-Relational-Interval-Tree.aspx 5. http://www.dbs ifi.imu.de/Publikationen/Papers/VLDB2000.pdf

142

www.ukoug.org

A303. 4814404
M25. 4814995
A48 4814996

A217 4814997

84112, 4814998

Ad4, 4814999

I

Ad44 4815001

12 3 4 56 7 8 9 10 11 12 13 14 15 18
October 2014

FIGURE 1: ROADWORK DATA

window) and want to find rows in the table that have any
interaction with the query window. We would be interested

in any planned works that contain, occur during, overlap, are
overlapped by, start, finish or are equal to our query window.
These relations are some of the 13 general interval relations as
defined by Allen? and can be shown graphically as per figure 2.

We can sum this up into two statements that must both be
true in order for there to be an interaction between our query
window (journey) and rows (planned works):

* The works must start before the end of the journey
» The works must end after the beginning of the journey

Using a B-Tree index, we can filter on one field or the other, but
not both (even using a compound index — as a compound index
does not work effectively on two inequalities).

Introduction to the Interval Tree

An interval tree is a data structure designed with intervals in
mind®. | use the term data structure loosely here as we don't
need to actually materialise an interval tree in memory or on
disk in order to use it.

Like a B-Tree, an interval tree has a root node and branch nodes.
It also has a number of parameters:

The Root Node is the top node in the tree. This node is at a fixed
point in time that is usually in the centre of the total range of
the intervals to be indexed.

The Initial Step Size is the distance in time between the root
node and each of its immediate child nodes. This is determined
by the total range of intervals to be indexed.

The Minimum Step Size is the smallest step size in the tree. It
determines the maximum depth of the tree.

The tree begins at the root node, and each node in the tree
except for those on the lowest level has two children. From the
root, the two children are found by moving an amount specified
by the Initial Step Size forwards and backwards from the root.
The step size is then halved, and the next set of descendent
nodes is found by moving half the initial step size forwards and

www.ukoug.org

Technology: James Checkley

Contains
During
Overlaps

Overlapped By

Start

Finish

Equal

FIGURE 2: INTERVAL RELATIONS

backwards from each of the root node’s descendents. This looks
complicated when described in text; on a diagram it is much
clearer. Figure 3 shows an example.

po
©

OOW®®

(@)
(2)
OJOO;

FIGURE 3: TREE STRUCTURE — NOTE THAT FOR SIMPLIFICATION | HAVE SUBSTITUTED
REAL DATES WITH NUMBERS — IMAGINE THAT EACH NUMBER REPRESENTS A
NUMBER OF DAYS FROM AN ARBITRARY EPOCH.

In order to actually make use of our tree, we need to associate
each of the intervals that we want to index with a node in the
tree. At this point I'm going to introduce a new term: The Fork
Node. We define the fork node of an interval to be the highest
node in the tree that is within that interval. We can define a

general function for determining the fork node of an interval.

Start at the root node:

Is this node within the interval?
Ifyes, this node is the fork node

Is this node before (smaller than) the start of the interval?
Ifyes, follow the index down the right path and repeat
with the next node

Is this node after (bigger than) the end of the interval?
Ifyes, follow the tree down the right path and repeat
with next node

Once the fork node for an interval is known, it is possible to
exploit some further properties of the interval tree in order to
find intersections between the rows that have been indexed,
and the query window.

>>

Technology: James Checkley

FIGURE 4: QUERY WINDOW PROPERTIES

Figure 4 shows a small subsection of an interval tree. An
example query window is shown as a blue line running from
position 9 to position 15 in the time series. Let's imagine that we
want to find all the intervals in the table that have any type of
interaction with our query window. To use the interval tree to do
this we must define the following sets of index nodes based on
the query window:

Inner nodes are the set of index nodes which are within the
query window, shown in green on the diagram. Left nodes are
found by walking up the tree from the fork node of the interval
window to the root of the tree, only nodes which are on this
walk and to the left of the interval window are in the left nodes
set. Correspondingly, right nodes are also found by walking the
tree from the fork node of the interval window, and identifying
which nodes are both on this walk and to the right of the query
window.

With these sets established, by inspection (and review of
previous work on the subject), we can determine that the
following rules apply.

Rule 1: Any interval which has a fork node that is a member of
Inner Nodes definitely interacts with our query window.

Rule 2: Any interval that is a member of Left Nodes and ends

after the start of the query window will definitely

interact with the query window.

Rule 3: Any interval that is a member of Right nodes and starts

before the query window will definitely interact with

the query window.

Rule 4: Any intervals which do not meet the criteria of rules 1,2

or 3 will not interact with the query window.

Applying Interval Trees in PL/SOL
In PL/SQL, the pseudo code above describing the tree walk to
find the fork node of an interval can be written as:

~-Listing 1: Find fork node function
CREATE OR REPLACE FUNCTION
temp find fork(root number, init_step number, interval start
number
,interval _end number, min_step number)
return number
DETERMINISTIC
is

1_current node number := root;

OracleScene

1 current_step number := init step;
function is node in_interval (node number) return boolean
is
begin
if interval start <= node and interval_end >= node then
return true;
else return false;
end if;
end is node_in interval;
begin
while true
loop
if is node in_interval {1l current node) = true then
return 1_current node;
elsif 1 current_node < interval start then
1_current node := 1 current node + 1_current step;
elsif 1 current node > interval end then
1 current node := 1_current node - 1 current_step;
end if;
if 1 current step < min step then exit;
end if;
1 current step
end loop;
return null;
end;

:= 1_current_step / 2;

I will use the conventions of representing all datetimes as Unix
4 byte timestamps. The Unix Epoch (0) will be the root of the
tree, and the initial step size will be set to the half the maximum
value that can be stored in a 4 byte signed integer: 0173741824.
This ensures that if an interval can be represented using Unix
timestamps, it will be possible to index it in the tree.

The following PL/SQL function can be used to convert between
an Oracle DATE type and the number of seconds since the Unix
Epoch:

--Listing 2: Date to unix time function

CREATE OR REPLACE FUNCTION date to unix time (p_date DATE)
return number

deterministic

As

Begin

Return (p_date - TO DATE(‘1970-01-01’,
End ;

/

‘YYYY-MM-DD’)) * 86400;

Armed with this function and these parameters, we can now try
and calculate a fork node for every row in our sample data. In
this case I'm going to add this as a virtual column:

--Listing 3, add virtual column

alter table temp roadworks

add index_node

generated always as

temp_find fork(0,1073741824,

temp date to unix time(start time),
temp date to unix time(end_time)
»1))

I will use this virtual column to create two B-Tree indexes, which
will be used to access the dataset based on the properties of the
interval tree described above:

CREATE INDEX ROADWORKS INTERVALS START ON TEMP ROADWORKS
(“INDEX_ NODE”, “START TIME”)

CREATE INDEX ROADWORKS INTERVALS END ON TEMP ROADWORKS (“INDEX
NODE”, “END TIME”)

In order to identify the left node and right nodes set of a query
window, we can use a pipeline function that will descend from
the root of the interval tree down to a given node, visiting each
node on the path:

www.ukoug.org

--Listing 4: Descend to node pipelined function

CREATE OR REPLACE FUNCTION TEMP_DESCEND TO NODE (root number
,init_step number, destination number
)

return temp node list

PIPELINED

is

1 current node number := root;

1 current step number := init_step;
begin

while true

loop

pipe row (1 _current node);
if 1 current node = destination then exit;
elsif 1 _current node < destination then
1 current node := 1 current node + 1 current step:
elsif 1 current node > destination then
1 _current node := 1 current node - 1_current_step;
end if;
1 _current_step := 1 _current step / 2;
end loop;
end;

Finally, we can now write an interval tree query to answer the
question:

Results & Conclusions

Technology: James Checkley

--Listing 5: Interval tree query to find any intersection
select count (distinct reference) from

(with left nodes as

(select column value node from

table (temp descend to node(0,1073741824, :window_start_unix))
where column value <= :window_start_unix

) ,right_nodes as

(select column _value node from

table (temp_descend to node(0,1073741824, :window_end unix))
where column value >= :window_end unix

)

select /*+ ORDERED USE NL(1n,tr) */ reference,road,start
time,end time,description from

left nodes ln ,temp roadworks tr

where ln.node = tr.index node

and tr.end time > to_ timestamp(‘2014-07-23 18',’'YYYY-MM-DD
HH24')
UNION ALL

select /*+ ORDERED USE NL(1n,tr) */ reference,road,start
time,end time,description from

right nodes rn ,temp roadworks tr

where rn.node = tr.index node

and tr.start time < to_ timestamp(‘2014-07-23 22’,’YYYY-MM-DD
HH24')
UNION ALL

Select reference, road, start time, end time, description from
temp roadworks where index node between :window start unix and
:window_end unix

):

COUNT (DISTINCTREFERENCE)

703

The result obtained using Listing 5 agrees with the result of a naive query which is answered using a full table scan. Using Tom
Kyte’s runstats utility we can obtain timing differences for the two queries.

DEIELEHIEI] Interval Tree Query Naive Query Interval tree ran in
Cold (first run) 70 hsecs 90 hsecs 77.78% of the time
Second run 1 hsecs 89 hsecs 1.12% of the time

We have demonstrated that it is possible to obtain significant performance improvements using interval trees; however this
must be weighed against the extra complexity introduced. The interval index must be maintained, which will slow insert
operations, and the dataset used here has been deliberately chosen with this article in mind and it is thus well suited to this
type of index. It should also be noted that providing hints for the optimiser will limit its ability to adapt to different datasets and
thus should generally be avoided.

Further Reading

Laurent Martin’s work on the development of the binary arithmatic based Static interval tree was an inspiration for this article
and I highly recommend reading his publications on the subject. Laurent has further optimised the structure using binary
arithmatic to cut down on the tree walking steps®. The paper on relational interval trees by Hans-Peter Kriegel, Marco Potke and
Thomas Seidl is also recommmended reading®. W

James Checkley
Consulting Solutions Manager, TEOCO

ABOUT
THE
AUTHOR

James is a manager in the services team at TEOCO, responsible for developing new
techniques for optimising mobile phone networks. He has 10 years experience of using
Oracle databases to process telecoms data on a Terabyte scale and his interests include
APEX, PL/SOL and Spatial (Locator). James is a Chartered Engineer.

in uk.linkedin.com/pub/james-checkley/2/a9/674

www.ukoug.org 45 |

